Abstract
Cadmium and zinc accumulation and toxicity were assessed in whole plants and callus culture of two Zygophyllum fabago populations originating from two metallicolous sites in Murcia (southeast Spain), La Peña and Mazarrón, the first containing 2.8-times more Cd and five-times more Zn than the second. Seedlings from both ecotypes were exposed for 3 weeks to 1 or 10 μm Cd, and to 10 or 100 μm Zn in nutrient solution in a controlled environment. Calli from both ecotypes were exposed to 0.01, 0.1 or 1 mm Cd, and to 0.1, 1 or 5 mm Zn. Plants from both populations exhibited similar tolerance to Zn, while tolerance to Cd appeared more important in plants from La Peña than those from Mazarrón. Only minor differences were recorded in final Cd accumulation, with higher Cd retention in roots and stems of plants from La Peña. In both populations, transient decreases in the rate of Zn intake and translocation from root to shoot were recorded. This reduction in ion uptake was not more efficient for the population from the most contaminated area compared to the less contaminated area. Similar concentrations of Cd were found in cotyledon-derived calli from the two populations, but absorbed Cd induced conspicuous water stress in calli issues from Mazarrón but not in those from La Peña. It is concluded that, beside comparable levels of heavy metal concentration in tissues, the physiological strategy of tolerance may differ according to the metal and according to the considered population.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have