Abstract
Background and Objectives: Hemiplegic or unilateral cerebral palsy (UCP) is primarily characterized by motor impairment, mainly affecting the upper limb. Research has centered on factors influencing the varying degrees of motor deficit in UCP, using neuroscience advancements for in vivo exploration of brain structure (morphometry) and cortical reorganization (functional magnetic resonance imaging (fMRI)). This study aims to evaluate functional activation in the motor cortex in UCP and to explore how lesion characteristics and timing affect neuroplasticity and motor function. Materials and Methods: Between 2017 and 2021, structural and functional MRIs were performed on 44 UCP patients (mean age 15.5 years, 24 males, 20 females), all with Manual Ability Classification System (MACS) levels I-III and Intelligence Quotient (IQ) ≥ 50. The lesion characteristics of size, type, and time of occurrence (ante-, peri-, or early postnatal) were analyzed. An association was sought between the characteristics of the lesion and the degree of motor deficit of the upper limb, as determined by the MACS level. fMRI assessed cortical activation during a finger-tapping task for the paretic hand and compared activation patterns based on lesion characteristics. Results: Six lesion types were identified, with arterial ischemic stroke being the most common and largest in volume. Lesion size strongly correlated with patients’ MACS levels, while lesion type and timing showed no association with the severity of motor impairment classified by MACS. Motor reorganization varied, with activation occurring ipsi-, contra-, or bilaterally to the affected hand, depending on lesion size and type. Smaller, subcortical lesions primarily showed ipsilesional activation, while larger, cortical lesions did not exhibit a specific group activation, possibly due to varying individual reorganization. No association was found between the lesion timing and the reorganization model. Conclusions: Motor functional reorganization in UCP is closely linked to lesion characteristics, with smaller, subcortical lesions favoring typical organization in the contralateral motor cortex. The timing of the lesion does not significantly affect cortical reorganization. Lesion size was a key determinant of motor function, whereas lesion type (e.g., ischemic stroke) and timing (early vs. late occurrence) were less critical for predicting functional outcome.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have