Abstract

An alternative gate oxide configuration is proposed to enhance the SiO2/SiC interface quality, enabling high mobility 4H-SiC lateral metal-oxide-semiconductor field-effect transistors (MOSFETs). The gate oxide is prepared by the combination of rapid thermal oxidation in N2O ambient, boron diffusion into SiO2, and plasma enhanced chemical vapor deposition of tetraethyl orthosilicate oxide. Capacitance-voltage (C-V) and conductance-voltage (G-V) measurements on fabricated capacitors reveal a reduction of both interface trap and near interface oxide trap densities. The fabrication of MOSFETs with very high field-effect mobility (μfe) values, up to 160 cm2/V s, is enabled. Several channel orientations, with respect to the wafer flat {112¯0}, have been studied to check μfe values and isotropy. Higher μfe values are obtained for a channel orientation of 90°. Boron distribution is studied by secondary ion mass spectrometry (SIMS) and time of flight SIMS. We propose that the combination of boron and nitrogen induces changes in the structure of the gate oxide which are positive in terms of the SiO2/SiC interface quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call