Abstract
Despite advances in percutaneous coronary interventions and the introduction of drug eluding stents, in-stent restenosis and stent thrombosis remain a clinically significant problem for bifurcations. The aim of this study is to determine the effect of dual bifurcation stenting on hemodynamic parameters known to influence restenosis and thrombosis. We hypothesized that double stenting, especially with a longer side branch (SB) stent, likely has a negative effect on wall shear stress (WSS), WSS gradient (WSSG), and oscillatory shear index (OSI). To test this hypothesis, we developed computational models of dual stents at bifurcations and non-Newtonian blood simulations. The models were then interfaced, meshed, and solved in a validated finite-element package. Longer and shorter stents at the SB and provisional stenting were compared. It was found that stents placed in the SB at a bifurcation lowered WSS, but elevated WSSG and OSI. Dual stenting with longer SB stent had the most adverse impact on SB endothelial WSS, WSSG, and OSI, with low WSS region up to 50% more than the case with shorter SB stent. The simulations also demonstrated flow disturbances resulting from SB stent struts protruding into the main flow field near the carina, which may have implications on stent thrombosis. The simulations predict a negative hemodynamic role for SB stenting, which is exaggerated with a longer stent, consistent with clinical trial findings that dual-stenting is comparable or inferior to provisional stenting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have