Abstract

The output energy of photovoltaic (PV) modules is influenced by the spectral irradiance distribution of the solar spectrum under outdoor conditions. To rate the precise output energy of PV modules, the correction of short circuit current (ISC) based on actual environmental conditions is needed, because ISC significantly depends on the shape of the spectral irradiance distribution. The average photon energy (APE) is a zero-dimensional index for spectral irradiance distribution, and APE value uniquely describes the shape of a solar spectrum. Thus, APE has an impact on ISC of PV modules. In this contribution, the relationship between APE coefficient and ISC of the multi-crystalline silicon, single-crystalline silicon, heterojunction intrinsic thin-layer, back contact, copper indium selenide and cadmium telluride PV modules has explored. It is revealed that APE value changes the ISC of PV modules which appeared to have immense possibilities of ISC correction using APE coefficient. This new approach can be very effective for precise rating the output energy of PV modules under actual outdoor conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call