Abstract

In this paper, we present the fabrication and characterization of gate-all-around (GAA) junctionless (JL) poly-Si nanowire (NW) transistors with a dual-gated configuration, in which a sub-gate is placed over a shorter main-gate in order to control the NW potential for the offset regions between the main-gate and S/D regions. The fabricated transistors exhibit well-behaved performance with on/off current ratio of ~106 and subthreshold swing of 76 mV/decade. Inevitable misalignment of lithographic patterning for the main-gate structure leads to asymmetrical channel offsets between the main-gate to source pad and to drain pad, respectively. That is, the length of un-gated NW close to the source pad differs from that to the drain pad. An important finding of notes is that when drain bias is applied to the end of the NW with a longer channel offset, the drain current is lower than that applied to the shorter end. Such a trend become less profound as the sub-gate bias increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.