Abstract

Among the pressures introduced by urbanization, artificial light at night (ALAN) can be problematic, particularly for nocturnal species. Populations of European hamsters (Cricetus cricetus) have dramatically decreased in France since 1972 because of habitat loss due to urbanisation and changes in agricultural methods. The conservation project Life Alister aims to increase the abundance of this species in suburban areas via hamster release. However, the success of this population-restoration project may be compromised due to the possible effects of ALAN on the daily and seasonal cycles and behaviour of this nocturnal species. To understand how hamsters may respond to relocation, we experimentally studied the impact of ALAN on hamster foraging, a decisive behaviour for survival in natural habitats. This study assessed the behavioural responses of 18 animals when choosing between two food sources of different palatability in two different lighting conditions: artificial light (4 or 40 lux) or darkness. Our results show that hamsters avoided lighting that mimics suburban streetlights, particularly when grooming. Moreover, this study reveals that hamsters do not avoid street-lit areas when highly palatable food is present, suggesting they would be more susceptible to predation under these circumstances. Our results suggest that the adverse effects of ALAN on the behaviour of hamsters released on the outskirts of developed suburban areas could be limited by restricting the number of street lights, moderating the intensity of street lighting, or switching lights off during the hours hamsters are most active. We further recommend that wildlife managers avoid planting plants that are highly palatable to hamsters close to lighting in suburban areas to limit the risk of predation for this species.

Highlights

  • Given the increase of the human population living in urban areas (Seto et al 2010) that has been observed in the last 50 years, urbanisation has dramatically expanded, invading rural areas and exposing wildlife to new environmental pressures

  • Time spent in each light condition. In both high-quality food (HQF) and low-quality food (LQF) conditions, we found that individuals spent significantly more time in the dark compartment” (DC) than the illuminated compartment” (IC) when the IC was illuminated at 40 lux (Table 1)

  • We highlighted that individuals spent significantly less time in the IC compared to the chance level (Student’s t-test, t = -2.62, P-value = 0.018; t = -2.14, P-value = 0.044 respectively for HQF and LQF)

Read more

Summary

Introduction

Given the increase of the human population living in urban areas (Seto et al 2010) that has been observed in the last 50 years, urbanisation has dramatically expanded, invading rural areas and exposing wildlife to new environmental pressures. The decrease observed in the Alsatian population of European hamsters (Cricetus cricetus) since 1972 is reported to be caused by habitat loss resulting from urbanisation and changes in agricultural practices, notably intensive cereal monoculture (O’Brien 2015; Tissier et al 2016a and 2017). This species is listed on the 4th annex of the European Union Directive for habitat conservation as a highly threatened mammal species and the steady decline of the population in France has alerted authorities of the importance of protecting the almost extinct population, which is located in the Alsace region (Villemey et al 2013). O’Dowd and Hay (1980) indicated that diversity in the diet composition of rodents seems to be negatively correlated with predation risk

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call