Abstract

A stretchable surface is one of the products features that numerous industrial and engineering field has been taken into consideration due to of its benefit. However, most of the fluid mechanic simulation for stretchable surface has been solved numerically and there is very limited theoretical study discovering this problem. Therefore, the present study investigated the convective Casson nanofluid flow and heat transfer over a linear stretching sheet. The aluminum oxide and silicon dioxide are considered. The analytical resolution of the governing problem yields velocity and temperature solutions using the Laplace transform method. Graphical representation illustrates how nanoparticle volume fraction affects velocity and temperature distribution profiles. Higher nanoparticle volume fractions slow down nanofluid flow and elevate temperature profiles. This investigation establishes a robust foundation for future research utilizing numerical methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call