Abstract

The boundary layer flow and heat transfer in nanofluid over a stretching sheet using Buongiorno model and thermophysical properties of nanoliquids is numerically studied. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using the similarity variables and been solved numerically using shooting method for nanoparticles, namely silver Ag, copper Cu, alumina Al 2 O 3 and titania TiO 2 in water as based fluid with Prandtl number Pr = 6.2. The numerical results obtained for the local Nusselt number and the local Sherwood number as well as velocity, temperature and nanoparticle concentration profiles are presented graphically and discussed. The effects of Brownian motion Nb , thermophoresis Nt and nanoparticle volume fraction φ on the flow and heat transfer behaviours are discussed in detail. This study has shown that the stretching sheet is an unique solutions. Otherwise, when the nanoparticle volume fraction parameter increases, Brownian motion and thermophoresis parameters decrease, the local Nusselt number increases, but decreases the local Sherwood number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call