Abstract
Abstract Accurate forecasting of a hurricane’s intensity changes near its landfall is of great importance in making an effective hurricane warning. This study uses airborne Doppler radar data collected during the NASA Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005 to examine the impact of airborne radar observations on the short-range numerical simulation of hurricane track and intensity changes. A series of numerical experiments is conducted for Hurricane Dennis (2005) to study its intensity changes near a landfall. Both radar reflectivity and radial velocity–derived wind fields are assimilated into the Weather Research and Forecasting (WRF) model with its three-dimensional variational data assimilation (3DVAR) system. Numerical results indicate that the radar data assimilation has greatly improved the simulated structure and intensity changes of Hurricane Dennis. Specifically, the assimilation of radar reflectivity data shows a notable influence on the thermal and hydrometeor structures of the initial vortex and the precipitation structure in the subsequent forecasts, although its impact on the intensity and track forecasts is relatively small. In contrast, assimilation of radar wind data results in moderate improvement in the storm-track forecast and significant improvement in the intensity and precipitation forecasts of Hurricane Dennis. The hurricane landfall, intensification, and weakening during the simulation period are well captured by assimilating both radar reflectivity and wind data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have