Abstract

Additive manufacturing, including fused deposition modelling, is a growing technology opening up wide perspectives in material sciences. However, the ability to produce suitable fire-retarded materials via this process has never been studied extensively. This work focuses on understanding the relation between reaction to fire and numerous additive manufacturing parameters. The goal was to determine the impact of those parameters on standard fire tests such as flame propagation test (UL94V) and cone calorimetry. The results were compared with material samples formulated via usual processes. On one hand, flame propagation results are impacted by many additive manufacturing parameters, such as the design of the part and the material flow. On the other hand, cone calorimeter results are only influenced by parameters having an impact on the sample mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call