Abstract

This framework analyzes the impact of activation energy (AE) and binary chemical reaction (BCR) in Darcy-Forchheimer flow of cross fluid with nanoparticles due to radially stretched surface. Moreover slip, joule heating and viscous dissipation aspects have been considered. Ordinary differential equations acquired from the modelled governing partial differential equations with the assistance of suitable transformations. Further the system of nonlinear equations is computed numerically by Runge-Kutta-Fehlberg method cum shooting technique. Graphical representation has been given to analyze the velocity, temperature and concentration fields with the effect of various pertinent parameters. It is evident that inertia coefficient declines the velocity. Velocity decays for larger Weissenberg number while opposite trend observed in temperature field. Temperature field rises for augmented values of Eckert number. Concentration increases with increase of energy parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.