Abstract

BackgroundThe accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA.Methods40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of agr function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 106 and 108 cfu/ml of agr functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model.Results15% isolates were agr dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 106 cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among agr functional and dysfunctional strains. However, against a high initial inoculum of 108 cfu/ml, killing activity was notably attenuated against agr dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log10 CFU/ml for agr functional vs. 2.41 log10 CFU/ml for agr dysfunctional MRSA (p = 0.0007).ConclusionsDysfunction in agr was less common among CA-MRSA vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections.

Highlights

  • The accessory gene regulator is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus

  • Dysfunction in agr was less common among CA-methicillin-resistant S. aureus (MRSA) vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA

  • Vancomycin MICs against HA-MRSA 7, 9, were 1.0, 2.0 mg/L and for CA-MRSA 26 and 20 were 1.0, and 1.0 mg/L. 15% (6 of 40) of isolates were dysfunctional in agr which was higher among HA-MRSA

Read more

Summary

Introduction

The accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA. The accessory gene regulator (agr) is a quorum sensing cluster of genes which orchestrate the expression of cellsecreted and virulence factors, and several metabolic pathways in Staphylococcus aureus in a growth dependant fashion [1,2]. While a large proportion of HA-MRSA display dysfunctional in the agr loci, the prevalence of agr dysfunction among CAMRSA is relatively low from 3.5 to 9% [10,11] This may account for the enhanced virulence of CAMRSA as compared with HA-MRSA, whether dysfunction in agr would hamper vancomycin bactericidal activity among Canadian CA-MRSA has not been fully elucidated. The objectives of this current study were to compare vancomycin pharmacodynamics of agr dysfunctional versus functional CA-MRSA and HA-MRSA clinical isolates from the Canadian Nosocomial Infection Surveillance Program at low and high initial inoculum

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.