Abstract

In-situ sodar and lidar measurements were coupled with numerical simulations for studying a sea-breeze event in a flat coastal area of the North Sea. The study's aims included the recognition of the dynamics of a sea-breeze structure, and its effects on the lower troposphere stratification and the three-dimensional (3D) pollutant distribution. A sea breeze was observed with ground-based remote sensing instruments and analysed by means of numerical simulations using the 3D non-hydrostatic atmospheric model Meso-NH. The vertical structure of the lower troposphere was experimentally determined from the lidar and sodar measurements, while numerical simulations focused on the propagation of the sea breeze inland. The sea-breeze front, the headwind, the thermal internal boundary layer, the gravity current and the sea-breeze circulation were observed and analysed. The development of a late stratification was also observed by the lidar and simulated by the model, suggesting the formation of a stable multilayered structure. The transport of passive tracers inside the sea breeze and their redistribution above the gravity current was simulated too. Numerical modelling showed that local pollutants may travel backward to the sea above the gravity current at relatively low speed due to the shearing between the landward gravity current and the seaward synoptic wind. Such dynamic conditions may enhance an accumulation of pollutants above coastal industrial areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.