Abstract

The electrical evaluation of the crystallinity of hexagonal boron nitride (h-BN) is still limited to the measurement of dielectric breakdown strength, in spite of its importance as the substrate for 2-dimensional van der Waals heterostructure devices. In this study, physical phenomena for degradation and failure in exfoliated single-crystal h-BN films were investigated using the constant-voltage stress test. At low electrical fields, the current gradually reduced and saturated with time, while the current increased at electrical fields higher than ~8 MV/cm and finally resulted in the catastrophic dielectric breakdown. These transient behaviors may be due to carrier trapping to the defect sites in h-BN because trapped carriers lower or enhance the electrical fields in h-BN depending on their polarities. The key finding is the current enhancement with time at the high electrical field, suggesting the accumulation of electrons generated by the impact ionization process. Therefore, a theoretical model including the electron generation rate by impact ionization process was developed. The experimental data support the expected degradation mechanism of h-BN. Moreover, the impact ionization coefficient was successfully extracted, which is comparable to that of SiO2, even though the fundamental band gap for h-BN is smaller than that for SiO2. Therefore, the dominant impact ionization in h-BN could be band-to-band excitation, not defect-assisted impact ionization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.