Abstract

The human gut microbiome, consisting of trillions of bacteria, significantly impacts health and disease. High-throughput profiling through advancement of modern technology provides the potential to enhance our understanding of the link between the microbiome and complex disease outcomes. However, there remains an open challenge where current microbiome models lack interpretability of microbial features, limiting a deeper understanding of the role of the gut microbiome in disease. To address this, we present a framework that combines a feature engineering step to transform tabular abundance data to image format using functional microbial annotation databases, with a residual spatial attention transformer block architecture for phenotype classification. Our model delivers improved predictive accuracy performance across multiclass classification compared to similar methods. More importantly, our approach provides interpretable feature importance through image classification saliency methods. This enables the extraction of taxa markers (features) associated with a disease outcome and also their associated functional microbial traits and metabolites. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.