Abstract
ObjectiveThe treatment of lung adenocarcinomas is conditioned by the presence of certain genetic abnormalities. Certain quantitative parameters obtained from FDG PET-CT, at the voxel scale, provide tumour shape and texture characteristics and might predict their mutational status. Our objective was to determine the impact of the segmentation method in the characterization of lung adenocarcinomas in FDG PET-CT. MethodsForty-nine patients with pulmonary adenocarcinomas were retrospectively included, with their initial FDG PET-CT image. The studied tumours were big, heterogeneous and difficult to segment automatically. The automatic FLAB algorithm was used with and without manual adjustment. The parameters were extracted and compared to the ALK, PDL1, and KRAS status, in order to compare the performances of the two segmentation methods. Their performance was determined by the ROC curve method. ResultsSeveral parameters were significant to predict genetic status (AUC>0.65). The best performing parameters were different according to the genes studied and according to the resampling methods used. The results were less dependent on resampling in automatic segmentation without manual adjustment. The best performing parameters were volume dependent parameters for segmentation with manual adjustment, and texture parameters for automatic segmentation without adjustment. ConclusionThe study of texture parameters is more efficient in automatic segmentation that is not manually adjusted, and it is advantageous to use a manual adjustment when studying volume-dependent parameters in the case of very heterogeneous tumors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have