Abstract

This work investigates the effect of silica nanoparticles functionalized with poly-diallyldimethylammonium chloride (PDDA) and silica microparticle inclusions (1.0 wt% and 3.5 wt%) on the impact resistance of hybrid carbon fibre reinforced composite laminates (HCFRCs) and tensile modulus of particle reinforced polymers (PRPs) via Full-Factorial Design of Experiments. The data were analysed with Analysis of Variance (ANOVA). The inclusion of particles led to reduced impact absorption of HCFRCs, except for composites with 1.0 wt% of silica in microscale, which provides an increase of 11.75% in the impact resistance. Microstructural analysis of fractured impact samples revealed pull-out as the predominant fracture mode in 1.0 wt% silica microparticle composites. Such mechanism leads to impact energy dissipation which may explain the increased impact resistance of these samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call