Abstract

It is well known that Global Navigation Satellite System (GNSS) signals suffer from a number of vulnerabilities, out of which a potential severe vulnerability is the effect of space weather. Space weather effects on the signals transmitted by GNSS include the effect of ionospheric perturbations and solar radio bursts. Intense solar radio bursts occurring in the L-band can impact the tracking performance of GNSS receivers located in the sunlit hemisphere of the Earth and are therefore a potential threat to safety-critical systems based on GNSS. Consequently monitoring these events is important for suitable warnings to be issued in support to related services and applications. On the other hand, the space weather effects leading to ionospheric perturbations on the GNSS signals are either due to dispersion or scintillation caused by plasma density irregularities. Scintillation can cause cycle slips and degrade the positioning accuracy in GNSS receivers. The high-latitude scintillation occurrence is known to correlate with changes in the solar and interplanetary conditions along with a consequential impact on GNSS receiver tracking performance. An assessment of the GNSS receiver tracking performance under scintillation can be analysed through the construction of receiver phase-locked loop (PLL) tracking jitter maps. These maps can offer a potentially useful tool to provide users with the prevailing tracking conditions under scintillation over a certain area and also be used to help mitigate the effects of scintillation on GNSS positioning. This paper reviews some of recent research results related to the impact and mitigation of space weather effects on GNSS receiver performance.

Highlights

  • There is a currently a growing reliance on Global Navigation Satellite System (GNSS like Global Positioning System (GPS), GLONASS, Beidou, Galileo) for several high-accuracy applications such as precision agriculture, offshore operations, transportation, surveying and construction

  • Intense solar radio bursts occurring in the L-band can impact the tracking performance of GNSS receivers located in the sunlit hemisphere of the Earth, thereby leading to intermittent loss of signal lock, and complete loss of positioning information, that can persist for a significant period of time

  • Space weather impacts on GNSS represent a significant challenge that hinders the effectiveness of GNSS-based high-accuracy techniques

Read more

Summary

Introduction

There is a currently a growing reliance on Global Navigation Satellite System (GNSS like Global Positioning System (GPS), GLONASS, Beidou, Galileo) for several high-accuracy applications such as precision agriculture, offshore operations, transportation, surveying and construction. A potentially severe vulnerability is the effect of space weather on the GNSS signals, a topic highlighted in the report published by the Royal Academy of Engineering (Cannon et al 2013). Space weather effects on the signals transmitted by GNSS include the effect of ionospheric perturbations and the direct effect of solar radio bursts. Of these two, the direct effect of solar radio bursts on GNSS signals has been the least investigated, and there is a significant gap in understanding this space weather effect. Intense solar radio bursts occurring in the L-band can impact the tracking performance of GNSS receivers located in the sunlit hemisphere of the Earth, thereby leading to intermittent loss of signal lock, and complete loss of positioning information, that can persist for a significant period of time. The effect of the ionosphere on GNSS signals

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call