Abstract
AbstractThe widespread use of hydrogen as an energy carrier is considered one of the most important keys to achieving the decarbonization necessary for the energy transition in numerous areas of technology and society. Not least due to the associated contact of metallic components with (pressurized) hydrogen, there is a latent risk of hydrogen-induced cracking (“hydrogen embrittlement”). The cause of damage is the hydrogen absorbed by the material, which is mobile via interstitial lattice diffusion. In high-strength steels with a tensile strength of more than 800 MPa, even very low diffusive hydrogen contents of less than 1 ppm (parts per million) can have a crack-inducing effect. Hence, dedicated, highly accurate analytical and testing methods are required for the detection of hydrogen and its effect on the mechanical properties of metals. This paper summarizes the current state of knowledge regarding hydrogen embrittlement and reviews the analytical, mechanical, and fractographic investigation methods for detecting hydrogen in metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.