Abstract
A document’s keywords provide high-level descriptions of the content that summarize the document’s central themes, concepts, ideas, or arguments. These descriptive phrases make it easier for algorithms to find relevant information quickly and efficiently. It plays a vital role in document processing, such as indexing, classification, clustering, and summarization. Traditional keyword extraction approaches rely on statistical distributions of key terms in a document for the most part. According to contemporary technological breakthroughs, contextual information is critical in deciding the semantics of the work at hand. Similarly, context-based features may be beneficial in the job of keyword extraction. For example, simply indicating the previous or next word of the phrase of interest might be used to describe the context of a phrase. This research presents several experiments to validate that context-based key extraction is significant compared to traditional methods. Additionally, the KeyBERT proposed methodology also results in improved results. The proposed work relies on identifying a group of important words or phrases from the document’s content that can reflect the authors’ main ideas, concepts, or arguments. It also uses contextual word embedding to extract keywords. Finally, the findings are compared to those obtained using older approaches such as Text Rank, Rake, Gensim, Yake, and TF-IDF. The Journals of Universal Computer (JUCS) dataset was employed in our research. Only data from abstracts were used to produce keywords for the research article, and the KeyBERT model outperformed traditional approaches in producing similar keywords to the authors’ provided keywords. The average similarity of our approach with author-assigned keywords is 51%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.