Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive malignancies and is associated with high mortality rates due to the lack of effective therapeutic targets. In this study, we demonstrated that insulin-like growth factor-II mRNA-binding protein 2 and 3 (IMP2 and IMP3) are specifically overexpressed in TNBC and cooperate to promote cell migration and invasion. Downregulation of both IMP2 and IMP3 in TNBC cells was found to produce a synergistic effect in suppressing cell invasion and invadopodia formation, whereas overexpression of IMP2 and IMP3 in luminal subtype cells enhanced epithelial-mesenchymal transition and metastasis. We also showed that IMP2 and IMP3 are direct targets of microRNA-200a (miR-200a), which is downregulated in TNBC. Conversely, IMP2 and IMP3 suppressed the transcription of miR-200a by destabilizing progesterone receptor (PR) mRNA through recruitment of the CCR4-NOT transcription complex subunit 1 (CNOT1) complex. Together, our findings suggest that IMP2 and IMP3 partially determine the characteristic phenotype and synergistically promote the metastasis of TNBC by downregulating PR. The identified IMP2/3-miR-200a-PR axis represents a novel double-negative feedback loop and serves as a new potential therapeutic target for the treatment of TNBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.