Abstract
Acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL) are hematological malignancies with high incidence rates that respond relatively well to conventional therapies. However, a major issue is the clinical emergence of patients with relapsed or refractory (r/r) NHL or ALL. In such circumstances, opportunities for complete remission significantly decline and mortality rates increase. The recent FDA approval of multiple cell-based therapies, Kymriah (tisagenlecleucel), Yescarta (axicabtagene ciloleucel), Tecartus (Brexucabtagene autoleucel KTE-X19), and Breyanzi (Lisocabtagene Maraleucel), has provided hope for those with r/r NHL and ALL. These new cell-based immunotherapies use genetically engineered chimeric antigen receptor (CAR) T-cells, whose success can be attributed to CAR's high specificity in recognizing B-cell-specific CD19 surface markers present on various B-cell malignancies and the subsequent initiation of anti-tumor activity. The efficacy of these treatments has led to promising results in many clinical trials, but relapses and adverse reactions such as cytokine release syndrome (CRS) and neurotoxicity (NT) remain pervasive, leaving areas for improvement in current and subsequent trials. In this review, we highlight the current information on traditional treatments of NHL and ALL, the design and manufacturing of various generations of CAR T-cells, the FDA approval of Kymriah, Yescarta Tecartus, and Breyanzi, and a summary of prominent clinical trials and the notable disadvantages of treatments. We further discuss approaches to potentially enhance CAR T-cell therapy for these malignancies, such as the inclusion of a suicide gene and use of FDA-approved drugs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have