Abstract

Nanoshells are a novel class of optically tunable nanoparticles that consist of a dielectric core surrounded by a thin gold shell. Based on the relative dimensions of the shell thickness and core radius, nanoshells may be designed to scatter and/or absorb light over a broad spectral range including the near-infrared (NIR), a wavelength region that provides maximal penetration of light through tissue. The ability to control both wavelength-dependent scattering and absorption of nanoshells offers the opportunity to design nanoshells which provide, in a single nanoparticle, both diagnostic and therapeutic capabilities. Here, we demonstrate a novel nanoshell-based all-optical platform technology for integrating cancer imaging and therapy applications. Immunotargeted nanoshells are engineered to both scatter light in the NIR enabling optical molecular cancer imaging and to absorb light, allowing selective destruction of targeted carcinoma cells through photothermal therapy. In a proof of principle experiment, dual imaging/therapy immunotargeted nanoshells are used to detect and destroy breast carcinoma cells that overexpress HER2, a clinically relevant cancer biomarker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.