Abstract

Immunosuppressants are now known to modulate bone metabolism, including bone formation and resorption. Because cartilage, formed by differentiated chondrocytes, serves as a template for endochondral bone formation, we examined the effects of the immunosuppressant rapamycin on the chondrogenesis of mesenchymal cells and on the cell signaling that is required for chondrogenesis, such as protein kinase C, extracellular signal-regulated kinase-1 (ERK-1), and p38 mitogen-activated protein (MAP) kinase pathways. Rapamycin inhibited the expression of type II collagen and the accumulation of sulfate glycosaminoglycan, indicating inhibition of the chondrogenesis of mesenchymal cells. Rapamycin treatment did not affect precartilage condensation, but it prevented cartilage nodule formation. Exposure of chondrifying mesenchymal cells to rapamycin blocked activation of the protein kinase C α and p38 MAP kinase, but had no discernible effect on ERK-1 signaling. Selective inhibition of PKCα or p38 MAP kinase activity, which is dramatically increased during chondrogenesis, with specific inhibitors in the absence of rapamycin blocked the chondrogenic differentiation of mesenchymal cells. Taken together, our data indicate that the immunosuppressant rapamycin inhibits the chondrogenesis of mesenchymal cells at the post-precartilage condensation stage by modulating signaling pathways including those of PKCα and p38 MAP kinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.