Abstract
Cells of the pancreatic islets produce several molecules including insulin (beta cells), glucagon (alpha cells), somatostatin (delta cells), pancreatic polypeptide (PP cells), ghrelin (epsilon cells), serotonin (enterochromaffin cells), gastrin (G cells) and small granules of unknown content secreted by the P/D1 cells. Secretion mechanism of some of these molecules is still poorly understood. However, Cathepsin L is shown to regulate insulin exocytosis in beta cells and activate the trypsinogen produced by the pancreatic serous acini cells into trypsin. The structure of the propeptide region of Cathepsin L is homologous to Cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2 alpha) which is also shown to exhibit selective inhibitory activities against Cathepsin L. It was thought that if CTLA-2 alpha was expressed in the pancreas; then, it would be an important regulator of protease activation and insulin secretion. The purpose of this study was, therefore, to examine by immunohistochemistry the cellular localization and distribution pattern of CTLA-2 alpha in the pancreas. Results showed that strong immunoreactivity was specifically detected in the pancreatic islets (endocrine pancreas) but not in the exocrine pancreas and pancreatic stroma. Immunostaining was further performed to investigate more on localization of Cathepsin L in the pancreas. Strong immunoreactivity for Cathepsin L was detected in the pancreatic islets, serous cells and the pancreas duct system. These findings suggest that CTLA-2 alpha may be involved in the proteolytic processing and secretion of insulin through regulation of Cathepsin L and that the regulated inhibition of Cathepsin L may have therapeutic potential for type 1 diabetes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have