Abstract
Successful embryo implantation and pregnancy in mammals depends on the establishment of immune tolerance between the maternal immune system and fetal cells. Monoclonal nonspecific suppressor factor beta (MNSFbeta), a cytokine produced by suppressor T cells in various tissues, possesses an antigen-nonspecific immune-suppressive function, and may be involved in the regulation of the uterine immune response during embryo implantation. In this study, anti-MNSFbeta IgG administered directly into the uterine lumen, significantly inhibited mouse embryo implantation in a dose-dependent manner in vivo, and this effect was reversed by co-administration of recombinant MNSFbeta. The effects of anti-MNSFbeta IgG on the gene pattern profiles in mouse uterine tissues were examined by cDNA microarray and several changes were confirmed by real-time PCR. Anti-MNSFbeta IgG caused up-regulation (> or = 2-fold) of 71 known genes and 17 unknown genes, and decreased expression (> or = 2-fold) of 74 known genes and 43 unknown genes, including several genes previously associated with embryo implantation or fetal development. Most of the known genes are involved in immune regulation, cell cycle/proliferation, cell differentiation/apoptosis, and lipid/glucose metabolism. These results demonstrate that MNSFbeta plays critical roles during the early pregnancy via multiple pathways.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have