Abstract

Colistin (CST) is a last-resort therapeutic option for carbapenem-resistant Klebsiella pneumoniae (CR-Kp) infections in critically ill patients. The effect of subinhibitory CST concentrations (sub-MICs) on biofilm formation is organism-dependent. We investigated the interactions between CST and innate immune cells against CR-Kp biofilms (CR-KpBF) by studying the effect of biofilm sub-MICs of CST on (i) damage induced by human polymorphonuclear neutrophils (PMNs) on CR-KpBF and (ii) the immunomodulatory potential on human mononuclear cells (MNCs) exposed to CR-KpBF. The impact of CST on PMN-induced biofilm damage was assessed by XTT reduction assay. Signal transduction and gene expression profiles in response to CST sub-MICs of MNCs exposed to CR-KpBF were studied by RT-PCR and multiplex ELISA. Pre-exposure of CR-Kp to 0.06 mg/L CST led to subsequent increased PMN-mediated biofilm damage against CR-KpBF in the presence of CST biofilm sub-MICs: there was an additive effect at 2, 4, 8 and 16 mg/L. However, the overall biofilm damage was not >52%. MNCs responded to CR-KpBF through Toll-like receptor 2 (TLR2) by 2.5-fold upregulation and NLRP3 inflammasome activation. CR-KpBF stimulated increased production of interleukin 1-beta (IL-1β), tumour necrosis factor-alpha (TNFα), IL-8 and IL-6. In the combination treatment, 0.5 mg/L CST reduced IL-1β, TNFα and IL-8 levels, whereas at 2 mg/L and 8 mg/L it increased the anti-inflammatory cytokine IL-10 (P < 0.05). Biofilm sub-MICs of CST enhance PMN killing capacity and attenuate production of inflammatory cytokines by MNCs exposed to CR-KpBF, playing a potentially important immunotherapeutic role especially for patients with cytokine deregulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call