Abstract

Graphene oxide (GO) is an oxidised form of graphene that has attracted commercial interest in multiple applications, including inks, printed electronics and spray coatings, which all raise health concerns due to potential creation of inhalable aerosols. Although a number of studies have discussed the toxicity of GO sheets, the in vivo impact of their lateral dimensions is still not clear. Here, we compared the effects of large GO sheets (l-GO, 1–20 µm) with those of small GO sheets (s-GO, < 1 µm) in terms of mesothelial damage and peritoneal inflammation, after intraperitoneal (i.p.) injection in mice. To benchmark the outcomes, long and rigid multi-walled carbon nanotubes (MWCNTs) that were shown to be associated with asbestos-like pathogenicity on the mesothelium were also tested. Our aim was to assess whether lateral dimensions can be a predictor of inflammogenicity for GO sheets in a similar fashion as length is for MWCNTs. While long MWCNTs dispersed in 0.5% BSA induced a granulomatous response on the diaphragmatic mesothelium and immune cell recruitment to the peritoneal cavity, GO sheets dispersed under similar conditions did not cause any response, regardless of their lateral dimensions. We further interrogated whether tuning the surface reactivity of GO by testing different dispersions (5% dextrose instead of 0.5% BSA) may change the biological outcome. Although the change of dispersion did not alter the impact of GO on the mesothelium (i.e. no granuloma), we observed that, when dispersed in protein-free 5% dextrose solution, s-GO elicited a greater recruitment of monocytic cells to the peritoneal cavity than l-GO, or when dispersed in protein-containing solution. Such recruitment coincided with the greater ability of s-GO to interact in vivo with peritoneal macrophages and was associated with a greater surface reactivity in comparison to l-GO. In conclusion, large dimension was not a determining factor of the immunological impact of GO sheets after i.p. administration. For an equal dose, GO sheets with lateral dimensions similar to the length of long MWCNTs were less pathogenic than the MWCNTs. On the other hand, surface reactivity and the ability of some smaller GO sheets to interact more readily with immune cells seem to be key parameters that can be tuned to improve the safety profile of GO. In particular, the choice of dispersion modality, which affected these two parameters, was found to be of crucial importance in the assessment of GO impact in this model. Overall, these findings are essential for a better understanding of the parameters governing GO toxicity and inflammation, and the rational design of safe GO-based formulations for various applications, including biomedicine.

Highlights

  • Graphene is a two-dimensional (2D) material composed of a single layer of sp2-hybridised carbon atoms, whose properties were characterised in 2004 after isolation from graphite (Novoselov et al 2004)

  • AFM and TEM images showed a clear difference in lateral dimensions between l-Graphene oxide (GO) and s-GO (Fig. 1a, b), which was supported by optical microscopy (Figure S1A, Supporting Information)

  • Combining the use of different microscopic techniques (Table S1, Supporting Information), we found that l-GO sheets had lateral dimensions ranging between 1 and 24 μm, whereas s-GO had lateral dimensions below 1 μm

Read more

Summary

Introduction

Graphene is a two-dimensional (2D) material composed of a single layer of sp2-hybridised carbon atoms, whose properties were characterised in 2004 after isolation from graphite (Novoselov et al 2004). During the manufacturing or handling of GBMs, and throughout the life cycle of GBM-enabled products, humans may in particular be exposed to GBMs by inhalation of aerosolised particles, leading to pulmonary diseases (Sanchez et al 2012; Bussy et al 2015). With this in mind, Schinwald et al demonstrated that large and rigid graphene nanoplatelets (GNPs) were biopersistent and inflammogenic in the pleural cavity, without inducing carcinogenesis despite a mesothelium granulomatous response (Schinwald et al 2012, 2014).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call