Abstract

Our purpose was to compare the expression of heparanase isoforms, in normal and in neoplastic endometrium. In a pioneering way, we sought to evaluate the expression of heparanase 1 (HPSE1) and heparanase 2 (HPSE2) in glandular and in stromal tissues. This is a case-control study, conducted retrospectively in a public hospital, using paraffin blocks of endometrial tissue from patients admitted from 2002 to 2011 with and without endometrial cancer, with regard to the immunohistochemical expression of HPSE1 and HPSE2. The paraffin blocks were used for tissue microarray analysis and immunohistochemistry study in glandular and stromal tissues. In the study period, 195 participants were enrolled, 75 with and 120 without cancer. There was no significant difference between them regarding HPSE1 expression, both in gland and in stromal tissues. Heparanase 1 expression in the glandular tissue was more frequent among those with high-grade carcinoma, compared with patients with carcinoma type I. The difference in the expression of HPSE2 was significant between groups: it was less frequent in the controls than in the patients with cancer in the glandular tissue. In the stromal tissue, HPSE2 expression was significantly higher in the controls than in the patients with cancer and different when patients of the secretory endometrium subgroup were compared with those with hypotrophic, proliferative endometriums or with architectural disorders. No significant difference was found in the heparanase expressions in patients with cancer according to prognosis factors. Heparanase 1 is more intensely expressed in the glandular tissue of high-grade compared with type I carcinomas. Heparanase 2 is more intensely expressed in the glandular tissue of cancer than in nonneoplastic endometrium, whereas the HPSE2 expression in the stromal tissue is higher in the nonneoplastic controls compared with the group of patients with cancer mainly in the secretory endometrium. This suggests that HPSE2 might be stimulated by progesterone, with a possible antineoplastic role, antagonist to HPSE1, to be further investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.