Abstract

The main goal of our study was to investigate the chemical coding of the superior cervical ganglion (SCG) sympathetic neurons supplying the porcine parotid gland. Additionally, the chemical nature of the vicinal nerve fibers surrounding the parotid SCG perikarya was investigated. Fast blue (FB) retrograde tracing of the parotid gland and immunofluorescent labelling of SCG neurons were studied in juvenile female pigs. Microscopic analysis revealed that only ipsilateral SCG neurons were retrogradely labelled. The labelled neurons formed a discrete cluster in the middle and caudal region of the ganglion. Immunofluorescent labelling revealed that virtually all of the FB-positive parotid gland neurons were immunoreactive to tyrosine hydroxylase (TH), confirming their sympathetic nature. In addition to TH, the majority of the FB-positive neurons were found to be immunoreactive to calbindin (CB) and to a lesser extent for neuropeptide Y (NPY), leu-enkephalin (LENK) and galanin (GAL). In the close proximity of the FB-traced perikarya, a large number of immunoreactive (IR) vasoactive intestinal peptide (VIP-IR), pituitary adenylate cyclase-activating polypeptide (PACAP-IR), nitric oxide synthase (NOS-IR) processes were identified. Moreover, calcitonin gene related peptide-immunoreactive (CGRP-IR), substance P-immunoreactive (SP-IR), vesicular acetylcholine transporter (VAChT-IR), calretinin (CRT-IR), GAL-IR, LENK-IR and CB-IR protrusions were observed. The results of the present study provide a detailed characteristic of the location and neurochemical coding of sympathetic SCG neurons innervating the parotid salivary gland of the pig and lay ground for more advanced, clinical studies on salivary gland innervations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call