Abstract

The effects of axotomy, chemical sympathectomy and preganglionic denervation on the expression of the neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), galanin (GAL), and the PACAP type 1 receptor in the rat superior cervical ganglion (SCG) were investigated by immunocytochemistry, in situ hybridization and receptor autoradiography. An antibody recognizing the rat vesicular acetylcholine transporter (VAChT) was used for the detection of preganglionic cholinergic fibers. In the normal SCG, PACAP-immunoreactivity (-IR) was present in numerous, basket-forming, preganglionic nerve fibers, while very few SCG neurons expressed PACAP. GAL-IR was restricted to occasional neurons, and a few nerve fibers, most of which were, in addition, PACAP-IR. PACAP type 1 receptors were expressed in all nerve cell bodies. Axotomy resulted in a rapid and prominent upregulation of PACAP in a large number of nerve cell bodies. There was a large increase also in GAL expression in many nerve cell bodies. In contrast, there was a marked decline in PACAP type 1 receptor expression. Chemical sympathectomy by administration of the catcholaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), gave rise to similar changes. Preganglionic denervation led to the disappearance of PACAP- and VAChT-IR baskets and to the upregulation of PACAP and GAL expression in neurons located close to the entrance of the sympathetic chain, whereas PACAP type 1 receptor expression was not affected. PACAP and GAL were coexpressed in most neurons after axotomy and chemical sympathectomy. Taken together, these results indicate that disruption of target contact and/or the infliction of an injury to the axons of the sympathetic neurons, rather than the preganglionic output, regulates the expression of PACAP, GAL and the PACAP type 1 receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call