Abstract

Immunoglobulin G (IgG) is one of the five antibody classes produced in mammals as part of the humoral responses accountable for protecting the organisms from infection. Its antibody heavy chain constant region is encoded by the Ig heavy-chain gamma gene (IGHG). In humans, there are four IGHG genes which encode the four subclasses, each with a specialized effector function. Although four subclasses of IgG proteins have also been reported in macaques, this does not appear to be the rule for all primates. In Platyrrhini, IgG has been stated to be encoded by a single-copy gene. To date, it remains unknown how the IGHG has expanded or contracted in the primate order; consequently, we have analyzed data from 38 primate genome sequences to identify IGHG genes and describe the evolution of IGHG genes in primate order. IGHG belongs to a multigene family that evolves by the birth-death evolutionary model in primates. Whereas Strepsirrhini and Platyrrhini have a single-copy gene, in Catarrhini, it has expanded to several paralogs in their genomes; some deleted and others pseudogenized. Furthermore, episodic positive selection may have promoted a species-specific IgG effector function. We propose that IgG evolved to reach an optimal number of copies per genome to adapt their humoral immune responses to different environmental conditions. This study has implications for biomedical trials using non-human primates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call