Abstract

Rabies is a preventable zoonotic disease caused by rabies virus (RABV) with high mortality. Messenger RNA (mRNA) vaccines have opened up new avenues for vaccine development and pandemic preparedness with potent scalability, which may overcome the only licensed rabies inactived vaccine’ shortcoming of time and cost wasting. Here, we designed an RABV mRNA vaccines expressed RABV G protein and capsulated with lipid nanoparticle (LNP) and different nucleic acid immunostimulator (CPG 1018, CPG 2395 and Poly I:C) and then assessed the immunogenicity and protective capacity in mice. While RABV mRNA capsulated with LNP and CPG 1018 could induce more potent humoral response with highest and durable RABV-G specific IgG titers and virus neutralizing titers, but also induced stronger RABV G-specific cell-mediated immunity (CMI) responses, including the highest proportions of interferon-γ (IFN-γ) and tumor necrosis factor alpha (TNFα)- producing CD4+/CD8 + T cells according to a flow cytometry assay in mice. In addition, in the pre- and post-exposure challenge assays, LNP + CPG 1018 capsulated RABV G mRNA induced 100 % protection against 25 LD50 of RABV infection with highest inhibition efficacy of viral replication with the decreased virus genome detected by qRT-PCR. These results showed that RABV G mRNA capsulated with LNP immune-stimulating nucleic acids CPG 1018 showed promise as a safe and economical rabies vaccine candidate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call