Abstract

The guanine nucleotide binding protein G0 alpha was immunolocalized in the guinea-pig vestibular system by confocal and electron microscopy. The vestibular sensory epithelia consist of the macula utriculi, macula sacculi and cristae ampullaris of the semicircular canals. Two types of hair cells are present in these epithelia. Type I hair cells are surrounded by an afferent nerve calyx that receives efferent innervation and type II hair cells are innervated directly by the afferent and efferent nerves. G0 alpha protein was observed on the inner face of the afferent calyceal membrane surrounding type I hair cells and in nerve endings in contact with type II hair cells. No labelling was found in the stereocilia and cuticular plate of type I and type II hair cells whereas the cytoplasmic matrix displayed a diffuse labelling. The plasma membrane of the supporting cells showed discreet labelling in the confocal microscope that are still confirmed by electron microscopy. A positive reaction was also observed along the plasma membrane of the vestibular ganglion neurons. Immunoblotting with affinity-purified polyclonal rabbit antibodies selective for the 39 kDa alpha subunit of G0 indicated that G0 alpha protein was present in both the vestibular ganglion. That G0 alpha labelling was observed in the cytoplasm of vestibular hair cells and in nerve endings contacting hair cells suggests that G0 may be involved in the modulation of vestibular neurotransmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.