Abstract

Immunization vectors based on cytomegalovirus (CMV) have attracted a lot of interest in recent years because of their high efficacy in the simian immunodeficiency virus (SIV) macaque model, which has been attributed to their ability to induce strong, unusually broad, and unconventionally restricted CD8+ T cell responses. To evaluate the ability of CMV-based vectors to mediate protection by other immune mechanisms, we evaluated a mouse CMV (MCMV)-based vector encoding Friend virus (FV) envelope (Env), which lacks any known CD8+ T cell epitopes, for its protective efficacy in the FV mouse model. When we immunized highly FV-susceptible mice with the Env-encoding MCMV vector (MCMV.env), we could detect high frequencies of Env-specific CD4+ T cells after a single immunization. While the control of an early FV challenge infection was highly variable, an FV infection applied later after immunization was tightly controlled by almost all immunized mice. Protection of mice correlated with their ability to mount a robust anamnestic neutralizing antibody response upon FV infection, but Env-specific CD4+ T cells also produced appreciable levels of interferon γ. Depletion and transfer experiments underlined the important role of antibodies for control of FV infection but also showed that while no Env-specific CD8+ T cells were induced by the MCMV.env vaccine, the presence of CD8+ T cells at the time of FV challenge was required. The immunity induced by MCMV.env immunization was long-lasting, but was restricted to MCMV naïve animals. Taken together, our results demonstrate a novel mode of action of a CMV-based vaccine for anti-retrovirus immunization that confers strong protection from retrovirus challenge, which is conferred by CD4+ T cells and antibodies.

Highlights

  • In the last two decades, vector-based immunization approaches for the development of an HIV vaccine have been pursued intensively, and recently vectors based on cytomegalovirus (CMV) have drawn a lot of interest

  • CMV-based vectors have attracted a lot of attention in the vaccine development field, since they were shown to induce unconventionally restricted CD8+ T cell responses and strong protection in the simian immunodeficiency virus (SIV) rhesus macaque model

  • To analyse the potential of CMV-based vectors in the Friend virus (FV) mouse model, we constructed a vector based on mouse cytomegalovirus (MCMV) encoding the envelope protein (Env) of Friend murine leukemia virus (F-MuLV) and tested its efficacy at preventing FV infection of highly susceptible CB6F1 mice

Read more

Summary

Introduction

In the last two decades, vector-based immunization approaches for the development of an HIV vaccine have been pursued intensively, and recently vectors based on cytomegalovirus (CMV) have drawn a lot of interest. For the induction of CD8+ T cell based immunity, epitope-based vaccines have been constructed using epitopes from influenza virus [6], lymphocytic choriomeningitis virus [6] or Ebola virus [7] as sole immunogens, which induced strong immune responses and protection in the respective challenge models. A rhesus CMV (RhCMV) based vaccine encoding an Ebola virus glycoprotein conferred protection to macaques from Ebola virus challenge but induced mainly antibody and not cellular immune responses [9]. RhCMV-based vectors were developed in the simian immunodeficiency virus (SIV) infection model in non-human primates and were shown to confer very strong protection in half of the vaccinated monkeys [10]. RhCMV-based immunization induced very broad CD8+ T cell responses to epitopes presented on major histocompatibility complex (MHC) type II and MHC-I E [11, 12], which was caused by deletion of multiple genes in this RhCMV vector [11, 13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call