Abstract
Poor prognosis in liver cancer is due to its high frequency of intrahepatic metastasis. Cancer stem-like cells (CSLCs), which possess the properties of stemness, tumor initiation capability, and resistance to therapy, also exhibit metastatic potential. Immune surveillance plays an important role in the accomplishment of metastasis. Herein, the property of immune evasion in CSLCs was investigated. Sphere cells were induced as CSLCs using a sphere induction medium containing neural survival factor-1. The expression of genes involved in immune evasion was determined using RNA-sequencing for sphere and parental cells followed by validation using flow cytometric analysis and ELISA. Susceptibility to natural killer (NK) cell-mediated cytotoxicity was examined by a chromium release assay. A xenograft model using BALB/c nu/nu mice was used to assess tumor growth. Gene set enrichment analysis was performed for interpreting RNA sequencing. The cell surface expressions of PD-L1, PD-L2, and CEACAM1 were upregulated and those of ULBP1 and MICA/MICB were downregulated in SK-sphere, CSLCs derived from SK-HEP-1, compared with that in parental cells. Levels of soluble MICA were elevated in conditioned medium from SK-sphere. Expression of HLA class I was not downregulated in SK-sphere. The susceptibilities to NK cell-mediated killing and secreted perforin were significantly lower in both CSLCs derived from SK-HEP-1 and HLE than in parental cells. Tumors formed upon inoculation of SK-sphere in immunodeficient mice harboring NK cells were larger than those formed upon inoculation of parental cells. Human hepatoma cell line-derived CSLCs may possess immune evasion properties, especially from NK cell-mediated immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.