Abstract

Immune checkpoint inhibitors (ICI) are key drugs in systemic therapy for advanced non-small-cell lung cancer (NSCLC) and have recently been incorporated into neoadjuvant and adjuvant settings for surgical resection. Currently, ICI combinations with cytotoxic agents are frequently used in clinical practice, although several ICI clinical trials have failed to produce long-term clinical benefits. Unfortunately, clinical benefit is moderate and limited considering physical and financial burden. Therefore, selecting appropriate patients and regimens for ICI therapy is important, and biomarkers are necessary for their selection. Tumor PD-L1 expression is universally used as a biomarker; however, PD-L1 assays show low analytical validity and reproducibility due to the visual-scoring system by pathologists. Recent tumor immunology studies explore that neoantigens derived from somatic mutations and the collaboration between T and B cells efficiently elicit antitumor responses. This suggests that high tumor mutational burden and T-cell infiltration are predictive biomarkers. However, B cells producing antibody (Ab) remain poorly understood and analyzed as biomarkers. We found that NY-ESO-1 and XAGE1 of cancer-testis antigen frequently elicit spontaneous humoral and cellular immune responses in NSCLC. Serum Ab against these antigens were detected in approximately 25% of NSCLC patients and predicted ICI monotherapy responses. In addition, the Ab levels were decreased with tumor shrinkage after ICI therapy. Thus, NY-ESO-1 and XAGE1 Ab are potentially biomarkers predicting and monitoring response to ICI therapy. For clinical applications, a fully-automated assay system measuring the Ab was developed. Here, we review current ICI therapy, tumor immunology, and biomarkers in NSCLC, and discuss the applicability of the serum biomarkers NY-ESO-1 and XAGE1 Ab.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call