Abstract
BACKGROUNDPediatric glioblastoma (pGBM), despite being relatively rare (incidence rate: 0.5/100,000), are a leading cause of cancer deaths in children with a median overall survival of 9–15 months. In recent years, immunotherapy has emerged as one of the more promising advances in oncology, with impressive response rates reported in several malignancies. Effective application of immunotherapy in brain tumors depends upon a better understanding of the immune cell phenotype and mechanisms of immunosuppression in these tumors. This understanding will allow for the selection of patient population who are most likely to benefit from immunotherapeutic approaches.MATERIAL AND METHODSIn order to determine the frequency, distribution, and phenotype of tumor-infiltrating immune cells in pGBMs, we undertook an immunohistochemical survey on 19 recurrent pGBMs for CD3, CD8, CD4, CD163, PD-1, PD-L1, and FoxP3; RNA-Seq was also performed on a subset of 9 cases. Distribution of lymphocytes (LYMPHS) was recorded as intratumoral (IT) or perivascular (PV).RESULTSThe analysis indicates intratumoral CD3+ LYMPHS are commonly <5% of tumor cell mass; however, approximately half (10/19) of these recurrent pGBM have infiltrates that range from 5 to 30% CD3+ LYMPHS. Of these, 4/10 CD3+ tumors exhibit brisk CD8+ infiltrates that are associated with PD-L1+ tumor cells. These tumors with brisk CD3+/CD8+ LYMPHS and PD-L1+ tumor cells were associated with longer survivals. The data were confirmed by RNA-seq analysis.CONCLUSIONPD-L1+ pGBMs associated with CD3+/CD8+ LYMPH infiltrates deserve further investigation as candidates for immunotherapy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have