Abstract
The logical design and engineering of bimetallic oxide nanomaterials with porous carbon materials have had a significant impact on the development of high-performance electrode materials for energy storage devices in recent years. The vertical and uniform building of porous multimetal nanomaterials on the surface of nanoscale carbon fibers is difficult but not impossible. We present a self-templated metal-organic framework (MOF)-based strategy for the synthesis and assembly of bimetallic oxides/nanoporous carbon nanostructures (Ni–Fe–O/NPC) on porous carbon nanofibers (PCNFs). The vertical alignment of Ni–Fe–O/NPC at PCNFs favors a fast redox reaction by shortening the ion/electrode diffusion path at the electrode-electrolyte interface and helps enhance the overall electrochemical performance. As a freestanding electrode for supercapacitors, it has a high specific capacitance of 1419 F g−1 at 1 A g−1 and good cycling life with capacitance retention of approximately 88.5% after 10,000 cycles. The Ni–Fe–O/NPC@PCNFs-400//Fe2O3/NPC@PCNFs asymmetric supercapacitor (ASC) achieves a high energy density of 41.3 Wh kg−1 at a power density of 892.2 W kg−1 with a long cycle of life (20,000 cycles) and a high rate capability (78.6%), indicating its potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.