Abstract

Bottom-up fabrication of such arrays with specific orientation of nanoparticles remains a challenge. In this paper, we report an immobilized seed-mediated growth strategy for the fabrication of two-dimensional (2D) arrays of mono- and bimetallic polyhedral nanocrystals with well-defined shapes and orientations on a substrate. This method relies on the controlled solution-phase deposition of metals (i.e., Au and Pd) on a selectively exposed surface of self-assembled seed nanoparticles that are immobilized on a substrate through collapsed polymer brushes. By using this approach, we demonstrated the preparation of various 2D arrays of shaped Au nanocrystals and Au core/Pd shell nanocrystals with asymmetric geometry of two halves and controlled orientations with respect to the substrate. The shape evolution of seeds to final nanocrystals was systematically monitored and evaluated by electron microscopic imaging. Our study suggests that the shape and orientation of nanocrystals within arrays is determined by the preferential orientation of assembled seed nanoparticles on the substrate and controllable deposition of metals on exposed crystal facets of immobilized seeds. The synthetic approach we developed presents an important addition to current tools for the fabrication of substrate-supported functional nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.