Abstract

Background Stress triggers adaptive and maladaptive changes in the central nervous system, including activation of the hypothalamic–pituitary–adrenal axis, and can trigger mood disorders and posttraumatic stress disorder. We examined the effect of immobilization stress (IMO) on gene expression of tryptophan hydroxylase (TPH), the rate-limiting enzyme in serotonin biosynthesis, and the role of cortisol in that response. Methods Regular and adrenalectomized Sprague-Dawley rats were exposed to various repetitions of IMO. Tryptophan hydroxylase messenger ribonucleic acid (mRNA) was determined by competitive reverse transcriptase polymerase chain reaction, and TPH protein was examined by immunoblot and immunocytochemistry. Results Elevation of TPH mRNA by IMO was tissue-specific and dose-dependent. A single IMO elicited a threefold rise in TPH mRNA in median raphe nucleus (MRN), but repeated (3×) IMOs were needed for similar response in dorsal raphe nucleus (DRN). Repeated daily IMO, up to 7 days, triggered a robust induction (6–10-fold) in TPH mRNA, accompanied by corresponding rise in TPH protein levels in raphe nuclei but not in the pineal gland. The rise in TPH immunoreactivity was widespread throughout the DRN and MRN. Bilateral adrenalectomy did not prevent the IMO-triggered increase in TPH immunoreactive protein in the raphe nuclei. Conclusions This study reveals adrenal glucocorticoid–independent induction of TPH gene expression in raphe nuclei in response to immobilization stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call