Abstract

A recently developed technique of immunoautoradiography on nitrocellulose transfers of serial frozen sections was used to determine tryptophan hydroxylase concentration in selected areas of the adult rat brain following neonatal 6-hydroxydopamine destruction of nigrostriatal dopamine neurons. Particular attention was paid to the neostriatum, known to be serotonin-hyperinnervated under these conditions, and to the nucleus raphe dorsalis, containing the cell bodies of origin for these nerve terminals. The hippocampus was also investigated as a territory of structurally intact serotonin innervation arising primarily from the nucleus raphe medianus. Tryptophan hydroxylase protein was measured at successive transverse levels across the entire caudorostral extent of all these regions. Similar measurements of tyrosine hydroxylase protein across the substantia nigra and the neostriatum verified the disappearance of the nigrostriatal dopamine neurons. The average tryptophan hydroxylase tissue concentration in the dorsal third of the serotonin-hyperinnervated neostriatum was up by 36% above control, i.e. significantly less than the number of its serotonin axon terminals or varicosities. This was therefore indicative of a lowering of the tryptophan hydroxylase protein content per serotonin ending. Interestingly, a tight correlation between the respective level-by-level concentrations of tryptophan hydroxylase and tyrosine hydroxylase protein in the control neostriatum allowed the prediction the tryptophan hydroxylase concentration after dopamine denervation with a serotonin hyperinnervation. Tryptophan hydroxylase concentration was also significantly reduced in both the nucleus raphe dorsalis and nucleus raphe medianus, notably at those raphe dorsalis levels known to give rise to the serotonin hyperinnervation of neostriatum. It is hypothesized that the lower steady-state level of tryptophan hydroxylase inside the terminals and cell bodies of hyperinnervating serotonin neurons was the result of a feedback inhibition of the synthesis of the enzyme by its end-product, presumably because of the increased amount of serotonin in these terminals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call