Abstract
A geochemical model is developed for the immobilization of U in the presence of metallic Fe. Zero-valent iron (ZVI) serves as a reducing agent inducing the reductive-precipitation of U, and ZVI corrosion products can serve as absorbing agents for U. The numerical model developed allows the complex interactions of U in solution in differing concentrations to be examined, under variable pH and redox conditions, with or without carbonate, in the presence of ZVI of different size and surface area. It incorporates Fe corrosion, Fe(II) and Fe(III) corrosion product formation, reductive-precipitation of U from the soluble U(VI) valence to the poorly soluble U(IV) valence, adsorption/de-sorption of U onto the Fe oxide corrosion products, and aqueous speciation. The processes of Fe corrosion and reductive precipitation of U are simulated as non-equilibrium, an improvement over other geochemical models. The reductive-precipitation process may use either ZVI or Fe(II) as the reducing agent. The model is calibrated using 3 separate sets of experimental data from published literature that cover a wide range of redox conditions. Sensitivity of the model predictions to variations in input parameters is examined. The simulation results show that the different published experimental results can be explained by different solution chemistries in the studies, specifically O 2 and CO 2 availability and pH, and the amount and surface area of the metallic Fe. With this numerical model the behavior of U in ZVI containing systems over a range of conditions realistic for groundwater can be investigated. By synthesizing observations across several experimental studies, it will lead to a broader understanding of the processes controlling U immobilization under varied geochemical conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have