Abstract
Magnetite nanoparticles (Fe3O4 NPs) were synthesized by co-precipitating method under optimized condition. The Fe3O4 NPs coated with sodium dodecyl sulfate-thenoyltrifluoroacetone (Fe3O4 NPs-SDS-TTFA) were then exerted as the magnetic solid phase extraction (MSPE) adsorbent for the extraction process prior to introducing to a flame atomic adsorption spectrometry (FAAS). The synthesized Fe3O4 NPs-SDS-TTFA were applied for the extraction of Pb(II) ions from different water samples. The characterization studies of nanoparticles were performed via scanning electron microscopy-energy dispersive micro-analysis (SEM-EDAX), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. The substantial parameters affecting the extraction efficiency were surveyed and optimized. A dynamic linear range (DLR) of 10-400 μg L-1 was obtained and the limit of detection (LOD, n=7) and relative standard deviation (RSD%, n= 6, C=20 μg L-1) were found to be 2.3 μg L-1 and 1.9%, respectively. According to the results, the proposed method successfully applied for the extraction of Pb(II) ions from different environmental water samples and satisfactory results achieved.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have