Abstract
The safe utilization of heavy metal contaminated farmland has attracted extensive attention of the whole society, and there is an urgent need to develop novel high-efficiency amendments. To clarify the actual remediation effect and potential for large-scale application of sulfhydryl grafted palygorskite (SGP) in Cd polluted soil in wheat-rice rotation mode, a field-scale experiment was conducted. SGP at the dosages of 0.5 g/kg–2.0 g/kg could reduce gain Cd contents by 27.15–59.05% and 16.16–79.47% for wheat and rice, respectively. The maximal decreases of soil available Cd figured out by DTPA extraction in wheat and rice season were 58.18% and 33.67%, respectively. The immobilization ratio for Cd was much more than that of trace elements, including Fe, Mn, Cu, and Zn, Ni. SGP showed an effective immobilization rate for soil Cd under the interference of many elements in the soil, pointing to the targeting and selectivity of its high-efficiency immobilization. It had no lifting effect on soil pH but decreased zeta potentials of soil particles. The sorption of Cd2+ on SGP amended soil could be fitted by the second-order kinetic model and Langmuir isotherm, and the changes of thermodynamic parameters showed SGP strengthened the fixation. SGP made the biological accumulation coefficient and transfer factor of rice grain drop dramatically but had no noticeable effect on these parameters of winter wheat, indicating different botanical responses. SGP as a novel immobilization amendment may provide an efficient and sustainable solution for the remediation of contaminated soil in wheat-rice rotation mode in field-scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.