Abstract

Microorganisms are widely used in large-scale pollution remediation due to their rapid reproduction and low cost. In this study, bioremediation batch experiments and characterization methods were adopted to investigate the mechanism of FeMn oxidizing bacteria on the immobilization of Cd in mining soil. The results showed that the FeMn oxidizing bacteria successfully reduced 36.84 % of the extractable Cd in the soil. The exchangeable forms, carbonate-bound forms, and organic-bound forms of Cd in the soil decreased by 11.4 %, 8 %, and 7.4 %, respectively, due to the addition of FeMn oxidizing bacteria, while FeMn oxides-bound and residual forms of Cd increased by 19.3 % and 7.5 %, as compared to the control treatments. The bacteria promotes the formation of amorphous FeMn precipitates such as lepidocrocite and goethite, which have high adsorption capacity on soil Cd. The oxidation rates of Fe and Mn in the soil treated with the oxidizing bacteria reached 70.32 % and 63.15 %, respectively. Meanwhile, the FeMn oxidizing bacteria increased soil pH and decreased soil organic matter content, further decreasing the extractable Cd in the soil. The FeMn oxidizing bacteria have the potential to be used in large mining areas to assist in the immobilization of heavy metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.