Abstract

Inappropriate handling of lead (Pb)-containing wastewater that is produced as a result of smelting activities threatens the surrounding environment and human health. The microbial-induced phosphate precipitation (MIPP) technology was applied to immobilize Pb2+ in an aqueous solution considering bacterial phosphorolysis ability and Ca-mediated alleviation of lead toxicity. Pb immobilization was accompanied by sample characterization in order to explore the inherent mechanism that affected the immobilization efficiency. Results showed that Ca2+ use elevated the immobilization efficiency through the prevention of bacterial physisorption and chemisorption, an enhancement to the phosphatase activity and the degree of SGP hydrolysis, and the provision of nucleation sites for Pb2+ to attach. The formation of the Pb-GP complex helped the bacteria to maintain its activity at the commencement of catalyzing SGP hydrolysis. The nucleated minerals that were precipitated in a columnar shape through a directional stacking manner under MIPP featured higher chemical stability compared to non-nucleated minerals. As a result, there were three pathways, namely, bacterial physisorption, bacterial chemisorption, and substrate chelation, applied for Pb immobilization. The immobilization efficiency of 99.6% is achieved by precipitating bioprecipitates including Pb5(PO4)3Cl, Pb10(PO4)6Cl2, and Ca2Pb3(PO4)3Cl. The findings accentuate the potential of applying the MIPP technology to Pb-containing wastewater remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call