Abstract

The secure and harmless disposal for Cr-bearing tannery sludge (Cr-TS) has attracted an increasing concern, due to potentially adverse effect on ecosystem and human health. A greener alternative method about “waste treatment with waste” for thermally stabilizing real Cr-TS was developed via employing coal fly ash (CA) as dopants in this research. The co-heat treatment of Cr-TS and CA was carried out at the temperature range of 600–1200 °C to investigate the oxidation of Cr(III), immobilization of chromium and leaching risk of the sintered products, and the mechanism of chromium immobilization was further explored. The results indicate that the doping of CA can significantly inhibit the oxidation of Cr(III) and immobilize chromium by incorporating chromium into spinel and uvarovite microcrystal. At the temperature higher than 1000 °C, most of chromium can be converted into stable crystalline phases. Furthermore, a prolonged leaching test was conducted to study the leaching toxicity of chromium in sintered products, indicating that leaching content of chromium is much less than the regulatory limit. This process is a feasible and promising alternative for immobilization of chromium in Cr-TS. The research findings are supposed to offer a theoretical foundation and strategy choice for thermal stabilization of chromium, as well as safety and harmless disposal of Cr-containing hazardous waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call