Abstract

A new methodology for the covalent functionalization of a SAM of 11-amino-1-undecanethiol, previously adsorbed on polycrystalline Au, was successfully applied in order to immobilize a β-CD layer on surface. A two steps synthetic strategy is proposed based on the activation of the SAM with di-(N-succinimidyl) carbonate for the further inclusion of the β-CD. The modification of the SAM was followed by PM-FTIRRAS, AFM imaging, CV, and EIS which confirmed the introduction of β-CD layer. The AFM images allowed the identification of homogeneously distributed β-CD aggregates over the Au grain microstructure. The electrode was characterized in the presence of electroactive species in solution, with the ability to form inclusion complexes with the β-CD cavity. Contrary to the reported for other thiolated CD derivative films, the results of this study showed the formation of well-packed and compact structures which strongly reduce non-specific adsorption phenomena. The redox response of the probes at the β-CD electrode was shown to appear at higher potentials with respect to the response at bare Au. Good correlation was found between the increase of the hydroquinone oxidation peak and, both, the scan rate used in CV experiments (typical behavior of surface-confined species) and the hydroquinone concentration. In the case of dopamine, the processes seem to shifted out of the potential window of SAM stability. The results suggest that this problem could be overcome by improving the design of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.